Search results for "memory alignment"
showing 3 items of 3 documents
Designing a graphics processing unit accelerated petaflop capable lattice Boltzmann solver: Read aligned data layouts and asynchronous communication
2017
The lattice Boltzmann method is a well-established numerical approach for complex fluid flow simulations. Recently, general-purpose graphics processing units (GPUs) have become available as high-performance computing resources at large scale. We report on designing and implementing a lattice Boltzmann solver for multi-GPU systems that achieves 1.79 PFLOPS performance on 16,384 GPUs. To achieve this performance, we introduce a GPU compatible version of the so-called bundle data layout and eliminate the halo sites in order to improve data access alignment. Furthermore, we make use of the possibility to overlap data transfer between the host central processing unit and the device GPU with comp…
Lattice Boltzmann Simulations at Petascale on Multi-GPU Systems with Asynchronous Data Transfer and Strictly Enforced Memory Read Alignment
2015
The lattice Boltzmann method is a well-established numerical approach for complex fluid flow simulations. Recently general-purpose graphics processing units have become accessible as high-performance computing resources at large-scale. We report on implementing a lattice Boltzmann solver for multi-GPU systems that achieves 0.69 PFLOPS performance on 16384 GPUs. In addition to optimizing the data layout on the GPUs and eliminating the halo sites, we make use of the possibility to overlap data transfer between the host CPU and the device GPU with computing on the GPU. We simulate flow in porous media and measure both strong and weak scaling performance with the emphasis being on a large scale…
Designing a graphics processing unit accelerated petaflop capable lattice Boltzmann solver: Read aligned data layouts and asynchronous communication
2016
The lattice Boltzmann method is a well-established numerical approach for complex fluid flow simulations. Recently, general-purpose graphics processing units (GPUs) have become available as high-performance computing resources at large scale. We report on designing and implementing a lattice Boltzmann solver for multi-GPU systems that achieves 1.79 PFLOPS performance on 16,384 GPUs. To achieve this performance, we introduce a GPU compatible version of the so-called bundle data layout and eliminate the halo sites in order to improve data access alignment. Furthermore, we make use of the possibility to overlap data transfer between the host central processing unit and the device GPU with com…